Identifiers for Digital Objects:
the Case of Software Source Code Preservation

Roberto Di Cosmo
Inria and University Paris Diderot
France
roberto@dicosmo.org

ABSTRACT

In the very broad scope addressed by digital preservation initiatives,
a special place belongs to the scientific and technical artifacts that
we need to properly archive to enable scientific reproducibility.
For these artifacts we need identifiers that are not only unique
and persistent, but also support integrity in an intrinsic way. They
must provide strong guarantees that the object denoted by a given
identifier will always be the same, without relying on third parties
and external administrative processes.

In this article, we report on our quest for these identifiers for
digital objects (IDOs), whose properties are different from, and
complementary to, those of the various digital identifiers of objects
(DIOs) that are in widespread use today. We argue that both kinds
of identifiers are needed and present the framework for intrinsic
persistent identifiers that we have adopted in Software Heritage
for preserving billions of software artifacts.

ACM Reference Format:

Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli. 2018. Iden-
tifiers for Digital Objects:, the Case of Software Source Code Preserva-
tion. In Proceedings of 16th International Conference on Digital Preservation
(iPRES2018). ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

In order to manipulate an entity it is essential to be able to refer to it.
This is why nouns and proper names are such important expressions
in natural language, and the subtleties of their nature have attracted
the attention of brilliant philosophers, from Stuart Mill to Frege,
Russel, and Kripke [13].

When building an information system, not necessarily computer
based, one faces the same need to name the entities that the system
will refer to, and we have become accustomed to call these names
identifiers. Just like in the case of nouns and proper names, the ap-
parently simple concept of identifier turns out to be rather complex
and subtle. Its scope and meaning depend on the properties that
one expects of it for each intended use case, and the complexity
increases when computers get involved.

This article looks at the requirements and use cases that we
have to consider when looking for a class of identifiers that are
adapted for Software Heritage [2, 15], a long term initiative whose

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

iPRES2018, September 2018, Boston, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-XxxX-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Morane Gruenpeter
University of L’Aquila and Inria
France
morane@softwareheritage.org

Stefano Zacchiroli
University Paris Diderot and Inria
France

zack@irif fr

goal is to collect, preserve, and share a specific form of digital
objects: software source code and its development history, which
are essential for preserving the scientific and technical knowledge
embedded in software [26].

Indeed, source code is a unique form of knowledge, designed
to be understood by humans and readily convertible into machine
executable instructions. While software in executable form is highly
valuable as a tool when the specific environment for which it was
compiled is available, source code can be read, studied and modified
by humans directly, even if the machine for which it was designed
has long disappeared. This is why Software Heritage has taken over
the long overdue mission preserving it.

The requirements that emerge for this particular setting, where
we need to handle billions of different digital objects, as shown in
Figure 1, cannot be fully satisfied by well-known identifier schemas
that are in use today in the framework of digital preservation.
Fortunately, modern software development has adopted tools and
techniques built on top of elegant concepts from computer science
dating back to the 1980’s [22], and it turns out that we can leverage
these very same concepts for building identifiers of digital objects
that satisfy all our requirements.

We believe that the analysis and results we report here will be
relevant for many forms of digital objects, beyond source code.

The article is structured as follows: we detail the Software Her-
itage requirements and main use cases in Section 2, we provide a
brief survey of digital identifiers in Section 3 and background on
the Software Heritage data model in Section 4, then we present
Software Heritage identifiers in Section 5, and validate them in
Section 6. Section 7 concludes discussing future works and open
perspectives.

2 REQUIREMENTS AND USE CASES

Software Heritage is an initiative with the set goal of building a
universal archive of software source code, together with its de-
velopment history as captured by state-of-the-art version control
systems [15]. The archive can be accessed through a Web portal
where the software source code it contains can be browsed and
downloaded. To ensure the long-term preservation of the archive’s
content a network of mirrors is being created, promoting the use of
diverse storage technologies and striving to achieve a broad variety
of geographical locations and jurisdictions. The project serves the
needs of a variety of stakeholders, ranging from cultural heritage
to education, from scientific research to industry.

This implies that the identifiers provided for software artifacts
must be able to satisfy a broad range of use cases coming from all
these areas. In this section, we highlight a few significant ones and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

iPRES2018, September 2018, Boston, USA

Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli

Source files Commits Projects
4,408,900,593 1,002,219,287 83,800,444

s.0B 138 100.0 M
4.0B 1.0B 80.0M
3.0B 750.0 M 60.0 M
208 500.0 M 40.0 M
1.0B 250.0 M 20.0M
o] 0 o]

Jan Jul Jan Jul Jan Apr Jul Jan Apr Apr Jul Oct Jan Apr

2016 2016 2017 2017 2018 2017 2017 2017 2018 2018 2017 2017 2017 2018 2018

Figure 1: Growth of the Software Heritage archive, as of April 2018

elicit from them a set of requirements for the Software Heritage
identifiers.

2.1 Software development

Building a universal, vendor-neutral, persistent reference software
archive is an answer to the need for systemic solution to software
source code preservation, which is not addressed by existing de-
velopment and hosting platforms [30]. Software Heritage needs to
cater for the needs of software developers, that can obtain, for each
archived software artifact, an unambiguous identifier that enables
collaborative development and facilitate spotting and fixing errors.

Reference, versioning, granularity. Hence, identifiers in Software
Heritage must be able to reference a specific version of the source
code of a project, at different levels of granularity: a repository, a
release, a directory, down to a single file.

Note that software is rarely fully self-contained. In addition to
internal resources shipped as part of the software source code, it
might also depend on external resources—such as software libraries,
runtime environments, data, multimedia, etc.—which are needed to
use the software in practice (at compilation and/or runtime). The
identifiers we are looking for here cover the state of source code
as seen by the software developers of a given project, in the sense
that they will change when internal resources are changed, but not
when external ones are.

Integrity. Furthermore, in current practice, software developers
expect the identifiers they use to provide a means of checking
integrity: having an identifier and the (allegedly) corresponding
object must be enough to independently verify that the object has
not been tampered with. Hence, identifiers in Software Heritage
must provide the same ability, in order to be adopted by software
developers.

2.2 Software citation

While software is becoming a legitimate product of research [3],
the practice of citing software is still inconsistent: some cite the
manual of the software, some the software paper, others just the
URL of the software repository or homepage. Despite the efforts
of various working groups, an agreed upon standard for software
citation has not emerged yet.

When citing software, it is important to distinguish between
a software project, which refers to the software as a concept and
its creation environment (and which is not a digital object) and
software artifacts themselves (source code, binaries, etc.), which
usually are digital objects.

In the scholarly ecosystem, we recognize three goals for refer-
encing software:

credit and attribution to be able to identify a software project
and ensures that the authors have their contributions recog-
nized and rewarded.

reuse and reproducibility to be able to reproduce an experi-
ment, identifying a specific artifact of the used software is
essential.

integrity checking mechanism to be able to guarantee the
accuracy and consistency of the link between a specific sofi-
ware artifact and its identifier.

In this paper, we do not address the complex issue of identifying
a software project, but we fully address the issue of identifying
software artifacts produced by the practice of collaborative devel-
opment of software source code, which is the main focus of Software
Heritage.

The usual ways of designating software artifacts by mentioning
the software project or the current development repository are
unsatisfactory for several reasons:

e The software itself will evolve and without mentioning the
actual version, the reference won’t be accurate.

e The authors can delete the current repository, and content
can disappear, making reuse impossible.

o The hosting service of a repository can shut down (e.g., Gito-
rious, Google Code) and the content might move elsewhere.

Therefore, no matter which solution is retained for software citation,
an archive of source code that provides a unique, persistent and
intrinsic identifier for a specific software artifact will ensure direct
access to the software source code without ambiguity.

2.3 Software evolution tracking

Software traceability is a key component in the Software Heritage
archive where we can view and analyze the transformation and
evolution of the software source code through its development

Identifiers for Digital Objects

history. For this use case it is necessary to identify the origin of
software source code, i.e., where it has been retrieved from and,
hopefully, where newer versions can be found in the future.

In the context of Software Heritage, an origin is a URL represent-
ing the location Software Heritage has crawled. A given software
project can correspond to multiple origins (e.g., the collaborative
repository where it has been developed, its mirrors on other forges,
its forks by contributors, etc.); at this point mapping all such origins
to a single software project entity cannot be fully automated yet.

Note that information about abstract software projects, e.g. de-
scriptive and usage metadata, are generally not available as part
of the software source code. As such, changes in such external
metadata are not covered by the identifiers we are looking for.

2.4 Long term digital preservation

The curation of the entire software commons comes with the great
responsibility of identifying each and every element while their
number is steadily growing.

Therefore, we need identifiers that will guarantee uniqueness
and persistence in the long term that must be:

gratis because there are billions of software artifacts to index,
growing fast

intrinsic because one cannot expect third-party resolvers to
be around forever

2.5 Summing up

Collecting the Software Heritage requirements from the above use
cases, we see that we need identifiers that are unique, persistent,
intrinsic, gratis and allow support for versioning and identifying
objects at different levels of granularity.

In the next section, we will embark on a quest to find identifiers
with these properties.

3 IDENTIFIER SYSTEMS AND THEIR
PROPERTIES

When dealing with digital objects, the usual approaches that worked
well for physical objects like books do not carry over easily: as it was
already remarked almost 20 years ago, “Identifying objects in digital
libraries seems simple but proves to be surprisingly complex” [5].

We believe that this complexity comes from the great variety
of properties that different communities expect from a (digital)
identifier [14] and the absence of a clear, shared definition of what
identifiers actually are [6].

In this section, we offer a simple conceptual framework for break-
ing up identifiers into their basic constituent parts, and present a
survey of the properties of identifiers that are found in the literature.

3.1 Identifier systems

As a first remark, it is important to notice that while one often
speaks of “identifiers”, what we are really dealing with is a system
that is composed of a set of labels that can be used as references
for objects and the system mechanisms performing some or all of
the following operations:

generation create a new label
assignment associate a label with an object

iPRES2018, September 2018, Boston, USA

verification given a label and an object, verify that they cor-
respond
retrieval given a label, provide a means of getting a copy of
the corresponding object
reverse lookup given a object, find the label that has been
assigned to it, if any
description given a label, provide a means of getting metadata
describing the corresponding object
While these mechanisms can in principle be implemented by
totally independent entities, when surveying the abundant existing
literature, we have found that, with very rare exceptions, the most
common systems of identifiers conflate all these conceptually dis-
tinct mechanisms into a single logical component! usually called
resolver.

Table 1: Mechanism implementation in common systems of
identifiers

Mech. / System | Handle | DOI | Ark | PURL | VDOI
Generation Yes Yes | Yes | Yes Yes
Assignment Yes Yes | Yes | Yes Yes
Verification N.A. N.A. | NA. | NA Yes
Retrieval Yes Yes | Yes | Yes Yes
Reverse Lookup | N.A. N.A. | NA. | NA. N.A.
Description Yes Yes | Yes | N.A. Yes

Despite the fact that the verification mechanism is of paramount
importance to all the identification systems used in the digital
landscape, we could not find any widely used system of identifiers
that provides a reliable technical way of supporting verification,
even if proposals in this sense have been around for quite a while [6,
29], see Table 1.

3.2 General properties

We now summarise the properties of identifier systems that we have
come across during our survey, and that are most relevant for the
use cases discussed in Section 2 (see also [20]).

uniqueness one object should have only one canonical identi-
fier

non ambiguity one identifier must denote only one object

persistence an identifier should keep its relevant properties
in the long term, potentially even after the object it refers to
has gone away. This term is used in the literature to capture
different ideas, sometimes it just covers the requirement that
an identifier should not disappear, while in other places the
concept even covers integrity and non ambiguity

integrity in most cases, one expects the object denoted by an
identifier to not be silently changed later on; an identifier
ensures integrity if a user can verify that the object retrieved
at any point in time is exactly the one that was associated
with it at the beginning

no middle man to get the highest grade of resilience to exter-
nal threats, one should not rely on a central authority for
assigning identifiers in the beginning or using them later on

!This single logical component may be built as a distributed system where all these
operations are delegated from one resolver instance to another.

iPRES2018, September 2018, Boston, USA

abstraction (opacity) early adopters of the Web started using
URLs as persistent identifiers, only to face dire consequences
when it became evident that over time they were not per-
sistent. As a consequence, more recent identifier schemas,
like DOI, Ark, or Handle, pushed the idea of using identifiers
that do not expose details that are subject to change, like the
exact location of a resource; similar ideas can be seen in the
Cool URIs or in PURLSs; the motivation and intent is really
the same as that of Abstract Data Types in computer science,
hence our preference for the term abstract w.r.t. the more
commonly used term opaque

gratis (free of charge) many traditional systems of identifiers,
like the ISBN [1], charge a fee for each identifier, and some
digital systems of identifiers have similar provisions [9, 12];
in the case of digital resources that need to be created or
modified frequently and smoothly, and in the case when
the amount of such resources is very large, charging a per-
identifier fee is often seen as non acceptable [20], because it
creates a significant barrier to adoption and engenders costs
that can become quickly much greater than the fixed cost of
the infrastructure needed to maintain them.

3.3 Discussion

Many digital identifier systems strive to provide uniqueness, like
URNSs, ARK and DOI [17, 18], but they all rely on administrative
structures to ensure it [5] and none of them provides technical guar-
antees. This fact leads to confusing issues like conflicting DOIs.?

For non-ambiguity, most common identifier systems rely on
administrative care, leading to the risk that the same identifier ends
up denoting different objects over time; this issue is similar to what
happens for URLs, and is quite real, as was already pointed out,
for example, in [6].

Despite the fact that the term “persistent identifier” is now used
almost everywhere, for most resolver-based systems persistence is
a property that is not technically guaranteed, as one can see clearly
stated for example in [27]:

The only operational connection between a handle and
the entity it names is maintained within the Handle
System. This of course does not guarantee persistence,
which is a function of administrative care.

Two of the three remaining properties, integrity and no middle
man, are largely ignored (and not satisfied) by the most common
systems of identifiers,* while the requirement for gratuity seems
much stronger in the librarian community than in the scientific
publishing one.

Finally, let us mention here the issues of versions and granularity.
An object may be used to create a new object that is a modification
of it, and one may want to keep track of the fact that the second
one is derived from the first one. Some identifier systems offer
means to encode this versioning information in the object label.
Similarly, an object may be composed of several other objects, and

2See the official list at https://www.crossref.org/06members/59conflict.html

3“there is no general guarantee that a URL... which at one time points to a given object
continues to do so” T. Berners-Lee et al. Uniform Resource Locators. RFC 1738

4“the DOI (or any other similar system) does not have any mechanism to prove that a
downloaded version of the document is the same as the document located through the
resolution process” [6]

Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli

some identifier systems may want to encode in the object label the
relation of containment.

3.4 DIOs versus IDOs

In our quest for an identifier system for the largest archive of
software source code ever built, we have thoroughly investigated
the most popular digital identifier systems, and have been forced
to strike them off the list of potential candidates one after the
other: they all lacked one or the other of the key properties needed
for a long-term universal source code archive that we discuss in
Section 2.

We would like to offer an explanation for why our requirements
were so difficult to satisfy in these commonplace identifier systems,
which is really, in a nutshell, already contained in the following
key remark from [24]:

The term “Digital Object Identifier” is construed as “dig-
ital identifier of an object,” rather than “identifier of
a digital object”: the objects identified by DOI names
may be of any form—digital, physical, or abstract—as
all these forms may be necessary parts of a content
management system. The DOI system is an abstract
framework which does not specify a particular context
of its application, but is designed with the aim of work-
ing over the Internet.

Indeed, it seems that all the systems of identifiers we surveyed
were really designed with the objective of providing digital identi-
fiers for any kind of object, including persons, organizations, con-
cepts, books or poems, that have no canonical digital representation.
These Digital Identifiers of Objects (or DIOs) make no assumptions
about the nature of the object they represent, and hence they inherit
all the epistemic issues of the traditional naming systems: the need
for a central authority, the complexity related to handling different
manifestations of the same conceptual object (like the PDF and the
Postscript version of the same book), and more, to the point that
the question of archiving identification information is considered
an issue yet to be resolved [28]. This fact also explains why none of
the systems of Table 1 supports reverse lookup. On the other hand,
for Software Heritage we first of all need a system of identifiers
for digital objects (or IDOs), as the objects we archive are all born
digital, and have a canonical digital representation: a source code
file is exactly the sequence of bytes that make it up.

Once we restrict ourselves to IDOs, we need only manipulate
digital objects, and as a consequence all the properties that are
difficult or impossible to satisfy in traditional systems of identifiers
become feasible.

Indeed, relatively recent advances in Computer Science make it
possible to design identifiers that a) do not rely on administrative
care for uniqueness, non ambiguity and persistence, b) can be cre-
ated and assigned without a central authority, and c) allow anybody
to check independently the integrity of the corresponding digital
object. These systems of identifiers leverage ideas and technology
coming from cryptography [22] and operating systems [11, 23],
and are now incorporated in most modern version control sys-
tems used by software developers, like Git [10]. Universally unique
identifiers (UUID) are created without a central authority and are

https://www.crossref.org/06members/59conflict.html

Identifiers for Digital Objects

considered unique (or quasi-unique) with a negligible collision prob-
ability [23]. And the same kind of intrinsic identifiers has been in
use for decades in the field of forensic analysis, where the National
Software Reference Library plays a prominent role [21].

This is why, despite the fact that the mission of Software Heritage
is to build an archive, we moved away from the DIOs commonly
used in archival projects and focused instead on the kind of IDOs
nowadays widely used for software development.

4 SOFTWARE HERITAGE DATA MODEL

In order to better appreciate the specificities of the use cases de-
scribed in Section 2 and how the proposed identifiers are going
to address them, in this section we give a brief overview of the
Software Heritage data model. Figure 2 provides an overview of
the structure of the Merkle direct acyclic graph (DAG) [22] that lies
at the heart of the Software Heritage archive [15].

At the bottom there are “file contents”, that are uniquely identi-
fied by a cryptographic hash [16]: if the same file content is used
in several software projects, we store it only once, and use only its
hash as a unique identifier to link to this content from the different
directories where it appears. Directories are also represented as
text files, in a standard way, and can be identified with a crypto-
graphic hash too, so duplicated directory structures get the same
hash, and we can, again, store them only once. This process, typical
of a Merkle DAG, goes on up to the root nodes of the graph.

Hence, when adding new content to the archive, if an object is
already present it will not be stored again, only new links to it will

Snapshots
\ |
y > Releases ¥ - ¥ p
>
i %
4 Revisions
Lo oo =

Contents (0 (0 (D

Figure 2: Software Heritage data model: a uniform Merkle
DAG containing source code artifacts and their development
history

iPRES2018, September 2018, Boston, USA

be added. This no-duplication mechanism is efficient for storage
and is also a robust mechanism to provide intrinsic and unique
identifiers.

Figure 3 gives a more detailed view of the Merkle DAG used by
Software Heritage, zooming in on a real example of software arti-
facts stored in the archive. Each node in the diagram corresponds
to an archived software artifact, produced as part of software de-
velopment. The following kinds of artifacts are supported:

contents (AKA “blobs”) the raw content of a file without its
context, note that their names are context-dependent and
stored as part of directory entries

directories a list of named directory entries, where each entry
can point to content objects (“file entries”), revisions (“revi-
sion entries”), or transitively to other directories (“directory
entries”). All entries are associated with the local name of
the entry (i.e., a relative path without any path separator)
and permission metadata and modification timestamps.

revisions (AKA “commits”) a point-in-time snapshot in the
development history of a project. A revision is made for
each modification in the software development workflow,
containing the root directory of the software artifact. The
revision identifier is calculated with the cryptographic hash
of all the metadata provided with the source code directory
itself.

releases (AKA “tags”) a revision that has been marked as note-
worthy by a project with a specific, usually mnemonic, name
(for instance, a version number). Each release points to a
revision and might include additional descriptive metadata.

snapshots During software development, within a team, the
work can be separated into branches to better collaborate. A
branch is an autonomous line of development which facili-
tates work on new features and bug fixes or even just separa-
tion between an in-production branch and the development
one. When collecting the software artifact, it is important to
capture and identify the state of all visible branches during
a specific visit, known as a snapshot.

This arrangement allows to store both specific versions of archived
software (pointed to by release objects), their full development
histories (following the chain of revision objects), and development
states at specific points in time (pointed by snapshot objects) in a
uniform data model.

It is important to remark that the structure of the Merkle tree
where all the objects are injected is defined in a canonical way, and
documented in the Software Heritage ingestion process. Hence,
even if future version control system come of age, or other software
development tools emerge, a given software project will always be
represented in the same way inside the archive.

In addition to the content of the Merkle DAG, Software Heritage
stores provenance information, as depicted in the top part of Fig-
ure 3. Each time a place that distributes software is visited, its full
state is captured in a snapshot object (possibly reusing a previous
object if the same state has been observed in the past) and a 3-way
mapping between the place (usually as its URL), the time of the
visit, and the snapshot object is added to an append-only record of
crawling activities.

iPRES2018, September 2018, Boston, USA Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli

origin visit snapshot timestamp
http eheritage.org/sourc idgit 1 e 0861ldbSe... Fri Feb 9 12:38:45 2018 +0100
https://f eheritage.org/sourc idgit 2 ./ 0861dbSe... FriFeb 9 13:29:00 2018 +0100
https://forge.softwareheritage.org/source/helloworld.git 3, ,'e 510aa88b... Fri Feb 9 15:52:50 2018 +0100
S
-
o
i 8 <<Directory>> Archive content
i 4 <<Revision>> ded70c63... aftervisits 1, 2 and 3
; 1a99a56b... rentries
N +author = "Stefano Zacchiroli <zack@.>" "COPYING"
+message = "Merge branch 'doc'" "Makefile" [**
+timestamp = Fri Feb 9 15:44:45 2018 +0100 "README .md"
+directory: Directory "src"
+parents: Revision list
<<Directory>>
<<Snapshot>> <<Revision>> ded70c63...
510aa88b... 3d515253... entrics
+branches +author = "Stefano Zacchiroli <zack@.>" ".gitignore" [**
HEAD +message = "README: add homepage link" "COPYING" -
refs/heads/master +timestamp = Fri Feb 9 15:44:30 2018 +0100 "Makefile" [<<Content>>
refs/heads/doc o +directory: Directory "README .md" 4ec6bled...
refs/tags/1.0 d +parents: Revision list "hello.c" . +data = "..For more info.."
oL
I' .
.
<<Snapshot>> g
0861db5e...
+branches
HEAD
refs/heads/master —
refs/tags/1.0 <<Revision>>
€7640e8d...
+author = "Stefano Zacchiroli <zack@.>" <<Directory>>
+message = "move source code to src/\n." 45f0c078...
<<Release>> +timestamp = Thu Feb 8 15:26:08 2018 +0100 Fentries <<Content>>
edfg2f21... +directory: Directory "COPYING" a8becc46...
+author = "Stefano Zacchiroli <zack@.>" +parents: Revision list "Makefile" +data = "SRC_DIR = .."
+name = "1.0" "README .md"
+message = "1.0 release" "src"
+timestamp = Thu Feb 8 15:51:00 2018 +0100 —
+target <<Revision>>
43ef7dcd...
+author = "Stefano Zacchiroli <zack@.>" -
+message = "add licensing information and README" <<Directory>> <<Content>>
+timestamp = Thu Feb 8 10:54:09 2018 +0100 / faBc0908... alafd006...
+directory: Directory +entries +data = "..Yet another.."
+parents: Revision list ".gitignore"
"COPYING"
“Makefile" <<Content>>
“README . md" 94a9ed02...
<<Revision>> “"hello.c" +data = "..GNU GENERAL.."
a3ee2lad...
+author = "Stefano Zacchiroli <zack@.>"
+message = "add build toolchain .." - <<Content>>
+timestamp = Thu Feb 8 10:49:29 2018 +0100 <<Directory>> 59b32b2f...
+directory: Directory r/—, b94a90cd... +data = "*.o\nhello"
+parents: Revision list +entries
".gitignore"
“Makefile" <<Content>>
"hello.c" 225ae01b...
<<Revision>> +data = "all: hello\n\n.."
1886826f...
+author = "Stefano Zacchiroli <zack@.>" -
+message = "implement a trivial .." <<Directory>>
+timestamp = Thu Feb 8 10:44:35 2018 +0100 /-’ 6ca2ed4d... <<Content>>
. +directory: Directory +entries c839dead...
Arch:ve" IR +parents: Revision list = None "hello.c" +data = "#include .."
after visits 1 and 2
Figure 3: Software Heritage data model: a more detailed view
5 SOFTWARE HERITAGE IDENTIFIERS we use them to provide the persistent identifiers for the content of

the archive. Their syntax, meaning, and usage is described below.
Note that they are identifiers and not URLs, even though a URL-
based resolver for Software Heritage persistent identifiers is also
provided.

A persistent identifier can point to any software artifact (or “ob-
ject” at each level of granularity) available in the Software Heritage
archive, as detailed in Section 4: contents, directories, revisions,
releases, snapshots.

For each object we provide an intrinsic, type-specific object
identifier that is embedded in its persistent identifier, as described
below. Object identifiers are strong cryptographic hashes computed
on the entire set of object properties to form a Merkle structure
where each node is labeled with the identifier and provides a secure
and efficient verification of the objects [22].

As a software source code universal archive, Software Heritage
needs to store and identify a variety of software artifacts that to-
gether compose a software product in source code form. One of the
particular properties of source code is that it is massively duplicated
as it was observed in [15]. With the Merkle DAG structure discussed
in Section 4, each node is an object that can be identified, while
deduplication is built-in. If an object is already represented in the
archive it will not be recreated, only the new link to it or the new
timestamp when it was seen will be kept. This no-duplication mech-
anism is efficient with storage but it is also a robust mechanism to
provide intrinsic and unique identifiers.

To each object present in the Software Heritage archive we asso-
ciate an intrinsic identifier computed through cryptographic hashes.
These identifiers are guaranteed to remain stable over time, and

Identifiers for Digital Objects

iPRES2018, September 2018, Boston, USA

Table 2: EBNF grammar of Software Heritage persistent identifiers

non

<identifier> ::= "swh" ":" <scheme_version>
<scheme_version> ::= "1" ;

<object_type> ::=

"snp" (* snapshot x)

"rel" (* release *)

"rev" (* revision x)

"dir" (* directory *)

"cnt" (% content *)

<object_id> ::= 40 * <hex_digit> ;

(*x intrinsic object id, as hex-encoded SHA1 *)
| "7" | gt | "on

<hex_digit> ::= "@" | "1" | "2" | "3" | "4" | "5" | "g"

| ngn | "p | ne" | ng" | ne" | "f" ;

5.1 Syntax

Syntactically, persistent identifiers are generated by the <identifier>

entry point of the EBNF grammar given in Table 2.

5.2 Semantics

The swh prefix makes explicit that these identifiers are related to
Software Heritage, and the colon (:) is used as separator between
the logical parts of identifiers. The scheme version (currently 1) is
the current version of this identifier scheme; future editions will use
higher version numbers, possibly breaking backward compatibility
(but without breaking the resolvability of identifiers that conform
to previous versions of the scheme).

A persistent identifier points to a single object, whose type is
explicitly captured by <object_type>:

snp identifiers points to snapshots,
rel to releases,

rev to revisions,

dir to directories,

cnt to contents.

The actual object pointed to is identified by the intrinsic identi-
fier <object_id>, which is a hex-encoded (using lowercase ASCII
characters) SHA1 [16] computed on the content and metadata of
the object itself.>

5.3 Git compatibility

Intrinsic object identifiers for contents, directories, revisions, and
releases are, at present, compatible with the Git way of computing
identifiers for its objects. A Software Heritage content identifier
will be identical to a Git blob identifier of any file with the same
content, a Software Heritage revision identifier will be identical
to the corresponding Git commit identifier, etc. This is not the
case for snapshot identifiers as Git doesn’t have a corresponding
object type. Git compatibility is incidental and is not guaranteed
to be maintained in future versions of this scheme (or Git), but is a
convenient feature for developers, for the time being.

SSee https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
for more details.

<object_type> ":" <object_id> ;

5.4 Examples

The identifiers below are all interesting examples of what the Soft-
ware Heritage identifiers look like.

They are resolved by the Software Heritage browsing pages
available at:
https://archive.softwareheritage.org/<identifier>

swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2

points to the content of a file containing the full text of the GPL3
license

swh:1:dir:d198bc9d7a6bcf6db04f476d29314157507d505]

points to a directory containing the source code of the Dark-
table photography application as it was at some point on 4 May 2017

swh:1:rev:309cf2674ee7a0749978cf8265ab91a60aea0f7d]

points to a commit in the development history of Darktable,
dated 16 January 2017, that added undo/redo supports for masks

swh:1:rel:22ece559cc7cc2364edc5e5593d63ae8bd2299f

points to Darktable release 2.3.0, dated 24 December 2016

swh:1:snp:c7¢108084bc0bf3d81436bf980b46e98bd338453]

points to a snapshot of the entire Darktable Git repository taken
on 4 May 2017 from GitHub.

5.5 Contextual information

It is often useful to complement persistent identifiers with contex-
tual information about the object’s setting. Currently it is possible

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://archive.softwareheritage.org/swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2
https://archive.softwareheritage.org/swh:1:dir:d198bc9d7a6bcf6db04f476d29314f157507d505
https://archive.softwareheritage.org/swh:1:rev:309cf2674ee7a0749978cf8265ab91a60aea0f7d
https://archive.softwareheritage.org/swh:1:rel:22ece559cc7cc2364edc5e5593d63ae8bd229f9f
https://archive.softwareheritage.org/swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453

iPRES2018, September 2018, Boston, USA

Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli

Table 3: EBNF grammar of complementary contextual information

<identifier_with_context> ::= <identifier> [<lines_ctxt>] [<origin_ctxt>] ;
<lines_ctxt> ::=";" "lines" "=" <line_number> ["-" <line_number>] ;
<origin_ctxt> ::= ";" "origin" "=" <url> ;

<line_number> ::= <dec_digit> + ;

<url> ::= (x RFC 3986 compliant URLs *) ;

to extend the identifier with the optional elements below using the
dedicated syntax presented in Table 3:

o the software origin where an object has been found/observed

o the line number(s) of interest, usually within a content object

The semi-colon (;) is used as a separator between the object

identifier and other contextual information. Each piece of contex-

tual information is specified as a key/value pair, using the equal

sign (=) as a separator. The extended contextual elements should
be added in the following manner:

software origin a URL where a given object has been found
or observed in the wild and used by Software Heritage to
ingest the object into the archive.

line numbers a single line number or a line range, two num-
bers separated with the hyphen (-). Note that line numbers
are purely indicative and are not meant to be stable, as in
some degenerate cases (e.g., text files which mix different
types of line terminators) it is impossible to resolve them
unambiguously.

For example, the following identifier

swh:1:dir:c6f07¢2173a458d098de45d4c459a8f1916d900f;
origin=https://github.com/id-Software/Quake-III-Arena

points to the source code root directory of the computer game
Quake IIT Arena® with the origin URL where it was found; while

swh:1:cnt:41ddb23118f92d7218099a5e7a990cf58f1d07fa;
lines=64-72

points to a comment segment with the warning "NOLI SE TAN-
GERE" in a file in the Apollo-11 source code.

We plan to extend these optional contextual attributes in the
future, as required to cover more use cases.

6 VALIDATION

The use of cryptographic hashes to produce unique identifiers for
digital objects is now commonplace in version control systems used
by programmers, but the underlying assumptions of this approach
deserve to be spelled out.

A hash signature, like the SHA1 we use in Software Heritage,
has a fixed length of 160 bits, and of course it can only provide 260
different identifiers. While this number is mind-bogglingly larger
than any number of digital artifacts we might want to ever archive,
the fact that the identifier is not assigned sequentially from a central

%See https://en.wikipedia.org/wiki/Quake_II_Arena

authority, but computed from the digital object itself means that
there is the possibility of a collision: the same hash computation
performed on two different digital objects ending up in the same
signature. The question is what the probability of such a collision
is and what to do in case one actually occurs.

Good cryptographic hashes are almost uniformly distributed,
so that a classical mathematical calculation based on the birthday
paradox shows that the probability of an accidental collision can be

approximated by:’
—k(k-1)
1—e 2N

where N is the number of all possible different hash values, and k
is the number of different objects hashed. Taking the case of the
Software Heritage archive, where we use SHAL1 as a hash, we have
N =219 and k = 10!° counting all kinds of objects. This gives a
probability of an accidental collision of 1 in 10?8, Even if the size of
the archive were to grow to one thousand times bigger, the odds of
a collision would still be 1 in 10?2, which is negligibly small.3

A different threat are malicious attacks, which are now feasible,
but at a steep computing cost of over 6000 years of processor time.?
To counter this problem, in Software Heritage we store multiple
hashes internally for each object (with SHA1 being in fact the
weakest of them), which allows us to spot both accidental collisions
and attacks on a particular hash function.

Hence, the chances of assigning the same identifier to two dif-
ferent objects are negligible, and largely inferior to the chances of
human error in maintaining a resolver database.

We can now validate the Software Heritage identifier scheme
presented in the previous section by performing a self-assessment
exercise, reviewing it against the properties discussed in Section 3.

uniqueness the identifier is computed from the content itself,
using a deterministic process, so each object can be given
only one identifier.

non-ambiguity giving the same identifier to two different ob-
jects is equivalent to finding a collision in a cryptographic
hash [16]. As discussed above, the chances of finding a colli-
sion are negligible.

persistence the Software Heritage archive guarantees that
nothing will be deleted intentionally and it will undertake the
task to perpetually maintain each identifier schema version,
even when it will be labeled obsolete (in the case of collisions
on the SHA1 hashes).

integrity using a cryptographic hash as identifier ensures that
modifications to the object, however minimal, would yield

’See for example https://en.wikipedia.org/wiki/Universally_unique_identifier#
Collisions

81t is estimated that the odds of a meteor landing on your house are of 1 in 107!
9See https://security.googleblog.com/2017/02/announcing-first-shal-collision.html
for a discussion.

https://archive.softwareheritage.org/swh:1:dir:c6f07c2173a458d098de45d4c459a8f1916d900f;origin=https://github.com/id-Software/Quake-III-Arena/
https://archive.softwareheritage.org/swh:1:dir:c6f07c2173a458d098de45d4c459a8f1916d900f;origin=https://github.com/id-Software/Quake-III-Arena/
https://archive.softwareheritage.org/swh:1:cnt:41ddb23118f92d7218099a5e7a990cf58f1d07fa;origin=https://github.com/chrislgarry/Apollo-11;lines=64-72/
https://archive.softwareheritage.org/swh:1:cnt:41ddb23118f92d7218099a5e7a990cf58f1d07fa;origin=https://github.com/chrislgarry/Apollo-11;lines=64-72/
https://en.wikipedia.org/wiki/Quake_III_Arena
https://en.wikipedia.org/wiki/Universally_unique_identifier#Collisions
https://en.wikipedia.org/wiki/Universally_unique_identifier#Collisions
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html

Identifiers for Digital Objects

a different identifier with an extremely high probability. A
user can recompute the object’s identifier and verify it is
indeed the right object.

no middle man the link between an object and its identifier
does not depend on the resolution of an online service. These
identifiers can be used and verified outside the system that
creates and maintains them.

abstraction (opacity) the identifier schema presented in this
article does not expose any piece of information that is sub-
ject to change over time.

gratis (free of charge) the identifiers calculated and main-
tained by Software Heritage are free and there are no other
costs related to the creation and attribution of the identifiers.

Considering the above assessment, we can conclude that the
Software Heritage identifier schema provides an identifier system
for digital objects (IDO) that satisfies all the requirements we have
identified for our use cases, except one.

Indeed, if we use only the IDOs to reference an object from the
archive, we have no means, looking only at the identifier, to know
which original software development platform it has been obtained
from. This would result in the loss of context information necessary
to trace future evolutions of the software artifact.

This is why we provide the optional contextual attributes de-
scribed in Section 5.5 to store, among others, the piece of informa-
tion describing the particular origin from which the object has been
obtained. The Software Heritage resolver currently understands
these optional contextual attributes and exploits them to show the
identified object in the specified context.

7 CONCLUSION

Starting from the requirements for persistent identifiers for soft-
ware source code artifacts, we have analysed in depth the properties
of systems of identifiers and introduced an essential distinction be-
tween digital identifiers of an object (DIOs) and identifiers of digital
objects (IDOs). By focusing on IDOs, we have shown that the cryp-
tographic hashes widely used in software development can be used
as identifiers of digital objects. With this option, several seemingly
impossible properties, like the independence from resolvers and
the possibility of independently verifyed object integrity become
feasible. We have then described the Software Heritage IDO schema
that we now use in production to identify over 7 billion different
objects in the project archive and shown that it satisfies all stated
requirements. We believe that this approach is appropriate not only
for software artifacts but also for other digital objects and ensures
long-term guarantees: uniqueness, persistence, and digital object
integrity.

Acknowledgements. The authors are grateful to the anonymous
reviewers for their constructive comments.

REFERENCES

[1] [n.d.]. What is an ISBN? ([n. d.]). https://www.isbn-international.org/content/
what-isbn [Online; accessed February 28th 2018].

[2] Jean-Frangois Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli. 2018. Build-
ing the Universal Archive of Source Code. Commun. ACM 61, 10 (Sept. 2018),
29-31. https://doi.org/10.1145/3183558

[3] Smith AM, Katz DS, and Niemeyer KE. 2016. Software citation principles. Peer]
Computer Science 2:e86 (2016). https://doi.org/10.7717/peerj-cs.86

[4] David Anderson. 2015. The digital dark age. Commun. ACM 58, 12 (2015), 20-23.

—_

5]

=
&

jpory
)

[16

(17

[18

[19

[20

[21

[22

[23

[24

[25]

[30

iPRES2018, September 2018, Boston, USA

William Y. Arms. 2001. Uniform Resource Names: Handles, PURLs, and Digital
Object Identifiers. Commun. ACM 44, 5 (May 2001), 68—. https://doi.org/10.1145/
374308.375358

Alapan Arnab and Andrew Hutchison. 2006. Verifiable Digital Object Identity
System. In Proceedings of the ACM Workshop on Digital Rights Management (DRM
'06). ACM, New York, NY, USA, 19-26. https://doi.org/10.1145/1179509.1179514
Michel Castagné. 2013. Consider the Source: The Value of Source Code to Digital
Preservation Strategies. SLIS Student Research Journal 2, 2 (2013), 5.

Vinton G Cerf. 2011. Avoiding" Bit Rot": Long-Term Preservation of Digital
Information [Point of View]. Proc. IEEE 99, 6 (2011), 915-916.

J. Charles. 1997. Web interests tangle over DNS proposal. IEEE Software 14, 4
(July 1997), 100-105. https://doi.org/10.1109/MS.1997.595968

Git community. 2005. Git version control system. (2005). https://git-scm.com/
retrieved 09 April 2018.

Wikipedia contributors. 2018. Plan 9 from Bell Labs — Wikipedia, The Free
Encyclopedia. (2018). https://en.wikipedia.org/w/index.php?title=Plan_9_from_
Bell_Labs&oldid=832417303 retrieved 09 April 2018.

Crossref. 2017. DOI Fees. (2017). https://web.archive.org/web/20180129114723/
https://www.crossref.org/fees/ Online; retrieved 09 April 2018.

Sam Cumming. 2016. Names. In The Stanford Encyclopedia of Philosophy (fall
2016 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab, Stanford University.
J Davidson. 2006. Persistent Identifiers. DCC Briefing Papers: Introduction to
Curation. Edinburgh: Digital Curation Centre. Handle: 1842/3368. (2006). http:
//www.dcc.ac.uk/resources/briefing-papers/introduction-curation

Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software Heritage: Why and
How to Preserve Software Source Code. In Proceedings of the 14th International
Conference on Digital Preservation, iPRES 2017.

D Eastlake 3rd and Paul Jones. 2001. US secure hash algorithm 1 (SHA1). RFC
3174. RFC Editor. https://doi.org/10.17487/RFC3174

International DOI Foundation. 2015. Factsheet: DOI System and Internet Identifier
Specifications. (2015). Online; retrieved 09 April 2018.

The California Digital Library. 2001. Archival Resource Key. (2001). http:
//n2t.net/e/ark_ids.html

Brian Matthews, Arif Shaon, Juan Bicarregui, and Catherine Jones. 2010. A
framework for software preservation. International Journal of Digital Curation 5,
1(2010), 91-105.

Julie A. McMurry, Nick Juty, Niklas Blomberg, Tony Burdett, Tom Conlin, Nathalie
Conte, Mélanie Courtot, John Deck, Michel Dumontier, Donal K. Fellows, Ale-
jandra Gonzalez-Beltran, Philipp Gormanns, Jeffrey Grethe, Janna Hastings,
Jean-Karim Hériché, Henning Hermjakob, Jon C. Ison, Rafael C. Jimenez, Simon
Jupp, John Kunze, Camille Laibe, Nicolas Le Novere, James Malone, Maria Je-
sus Martin, Johanna R. McEntyre, Chris Morris, Juha Muilu, Wolfgang Miiller,
Philippe Rocca-Serra, Susanna-Assunta Sansone, Murat Sariyar, Jacky L. Snoep,
Stian Soiland-Reyes, Natalie J. Stanford, Neil Swainston, Nicole Washington,
Alan R. Williams, Sarala M. Wimalaratne, Lilly M. Winfree, Katherine Wols-
tencroft, Carole Goble, Christopher J. Mungall, Melissa A. Haendel, and Helen
Parkinson. 2017. Identifiers for the 21st century: How to design, provision, and
reuse persistent identifiers to maximize utility and impact of life science data.
PLOS Biology 15, 6 (06 2017), 1-18. https://doi.org/10.1371/journal.pbio.2001414
Steve Mead. 2006. Unique File Identification in the National Software Refer-
ence Library. (2006). https://www.nist.gov/sites/default/files/draft-060530.pdf
National Institute of Standards and Technology.

Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and
Applications of Cryptographic Techniques, Santa Barbara, California, USA, August
16-20, 1987, Proceedings (Lecture Notes in Computer Science), Carl Pomerance (Ed.),
Vol. 293. Springer, 369-378. https://doi.org/10.1007/3-540-48184-2_32

R. Salz P. Leach, M. Mealling. 2005. A Universally Unique IDentifier (UUID) URN
Namespace. (2005). https://doi.org/10.17487/RFC4122

Norman Paskin. 2010. Digital object identifier (DOI) system. Encyclopedia of
library and information sciences 3 (2010), 1586—1592.

David S. H. Rosenthal. 2017. The medium-term prospects for long-term stor-
age systems. Library Hi Tech 35, 1 (2017), 11-31. https://doi.org/10.1108/
LHT-11-2016-0128

Leonard J. Shustek. 2006. What Should We Collect to Preserve the History
of Software? IEEE Annals of the History of Computing 28, 4 (2006), 110-112.
https://doi.org/10.1109/MAHC.2006.78

S. Sun, L. Lannom, and B. Boesch. 2003. Handle System Overview. RFC 3650.
Douglas Thain, Peter Ivie, and Haiyan Meng. 2015. Techniques for Preserving
Scientific Software Executions: Preserve the Mess or Encourage Cleanliness?
Proceedings of the International Conference on Digital Preservation (iPRES) (2015).
https://doi.org/doi:10.7274/R0OCZ353M

the Contributors to the Decentralized Identifiers (DIDs). 2018. Decentralized
Identifiers (DIDs) v0.9. (2018). https://w3c-ccg.github.io/did-spec/ Online; Draft
Community Group Report 02 April 2018.

Herbert Van de Sompel and Andrew Treolar. 2014. A perspective on Archiving the
Scholarly Web. Proceedings of the International Conference on Digital Preservation
(iPRES) (2014), 194-198.

https://www.isbn-international.org/content/what-isbn
https://www.isbn-international.org/content/what-isbn
https://doi.org/10.1145/3183558
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.1145/374308.375358
https://doi.org/10.1145/374308.375358
https://doi.org/10.1145/1179509.1179514
https://doi.org/10.1109/MS.1997.595968
https://git-scm.com/
https://en.wikipedia.org/w/index.php?title=Plan_9_from_Bell_Labs&oldid=832417303
https://en.wikipedia.org/w/index.php?title=Plan_9_from_Bell_Labs&oldid=832417303
https://web.archive.org/web/20180129114723/https://www.crossref.org/fees/
https://web.archive.org/web/20180129114723/https://www.crossref.org/fees/
http://www.dcc.ac.uk/resources/briefing-papers/introduction-curation
http://www.dcc.ac.uk/resources/briefing-papers/introduction-curation
https://doi.org/10.17487/RFC3174
http://n2t.net/e/ark_ids.html
http://n2t.net/e/ark_ids.html
https://doi.org/10.1371/journal.pbio.2001414
https://www.nist.gov/sites/default/files/draft-060530.pdf
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.17487/RFC4122
https://doi.org/10.1108/LHT-11-2016-0128
https://doi.org/10.1108/LHT-11-2016-0128
https://doi.org/10.1109/MAHC.2006.78
https://doi.org/doi:10.7274/R0CZ353M
https://w3c-ccg.github.io/did-spec/

	Abstract
	1 Introduction
	2 Requirements and Use Cases
	2.1 Software development
	2.2 Software citation
	2.3 Software evolution tracking
	2.4 Long term digital preservation
	2.5 Summing up

	3 Identifier systems and their properties
	3.1 Identifier systems
	3.2 General properties
	3.3 Discussion
	3.4 DIOs versus IDOs

	4 Software Heritage data model
	5 Software Heritage identifiers
	5.1 Syntax
	5.2 Semantics
	5.3 Git compatibility
	5.4 Examples
	5.5 Contextual information

	6 Validation
	7 Conclusion
	References

